Dopant Concentration Effect on NiO-doped Sodium Metaphosphate Glasses: A Combined X-Ray Absorption Fine Structure (XAFS) and UV/VIS/NIR Spectroscopic Investigation

Boris Brendebach^a, Robert Glaum^b, Michael Funke^b, Felix Reinauer^b, Josef Hormes^c, and Hartwig Modrow^a

Germany
^c Center for Advanced Microstructures and Devices, 6980 Jefferson Hwy., Baton Rouge, LA 70806,

USA
Reprint requests to Dr. H. M.; Fax: +49 228 737869; E-mail: modrow@physik.uni-bonn.de

Z. Naturforsch. **60a**, 449 – 458 (2005); received March 2, 2005

NiO-doped sodium metaphosphate glasses $(NaPO_3)_{1-x}(NiO)_x$ $(0.008 \le x \le 0.30)$ show a color shift from yellow to orange-brown with increasing NiO concentration. XANES and EXAFS spectra of these glasses suggest the presence of $[Ni^{II}O_6]$ groups as chromophores. EXAFS (Ni K-edge) analysis of the NiO-doped phosphate glasses including an evaluation of higher coordination shells leads to $d_{av}(Ni-O) = 2.06(2)$ Å. Evidence is provided for an increased connectivity of $[Ni^{II}O_6]$ chromophores at higher NiO concentration in the glasses. A decrease in the intensity of the main absorption edge with increasing nickel oxide concentration is observed. This systematic decrease is attributed to a change in the bonding characteristics between nickel(II) and the coordinating phosphate groups from mainly ionic to a small but significant contribution of covalent bonding. A similar effect is observed in the electronic absorption spectra of glasses showing a decrease of the Racah parameter B for the Ni^{2+} ions

Key words: XANES; EXAFS; UV/VIS/NIR Spectroscopy; Sodium Metaphosphate Glasses; Metal-ligand Interaction.

 ^a Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn, Germany
 ^b Institut für Anorganische Chemie, Universität Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn,